Coupled Sparse Dictionary for Depth-Based Cup Segmentation from Single Color Fundus Image

نویسندگان

  • Arunava Chakravarty
  • Jayanthi Sivaswamy
چکیده

We present a novel framework for depth based optic cup boundary extraction from a single 2D color fundus photograph per eye. Multiple depth estimates from shading, color and texture gradients in the image are correlated with Optical Coherence Tomography (OCT) based depth using a coupled sparse dictionary, trained on image-depth pairs. Finally, a Markov Random Field is formulated on the depth map to model the relative depth and discontinuity at the cup boundary. Leave-one-out validation of depth estimation on the INSPIRE dataset gave average correlation coefficient of 0.80. Our cup segmentation outperforms several state-of-the-art methods on the DRISHTI-GS dataset with an average F-score of 0.81 and boundary-error of 21.21 pixels on test set against manual expert markings. Evaluation on an additional set of 28 images against OCT scanner provided groundtruth showed an average rms error of 0.11 on Cup-Disk diameter and 0.19 on Cup-disk area ratios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Discriminatively Trained Sparse Code Gradients for Contour Detection

Finding contours in natural images is a fundamental problem that serves as the basis of many tasks such as image segmentation and object recognition. At the core of contour detection technologies are a set of hand-designed gradient features, used by most approaches including the state-of-the-art Global Pb (gPb) operator. In this work, we show that contour detection accuracy can be significantly...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 17 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2014